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Abstract
The design of many novel electronic devices will hinge on our understanding
of the joining of certain nanostructures. In particular, the perpendicular
joining of a carbon nanotube to a flat graphene sheet applies to the situation
of connecting to an electronic platform. Connecting carbon nanostructures
essentially involves a discrete geometric procedure, and the present authors
have attempted to solve such problems by invoking the principle that the bond
lengths and bond angles at the join are determined in such a manner that their
total squared deviation from some ideal configuration is a minimum. Other
authors suggest that carbon nanotubes might be deformed in such a way that
their total curvature squared is minimized. From a theoretical standpoint, any
continuous approach to such essentially discrete problems could be a valuable
tool in obtaining the main qualitative features at the join. Here we propose
a continuous variational approach to the determination of the join geometry
assuming that the curvature is minimized for prescribed join lengths and defect
geometries. We find that the variational model provides good overall agreement
with the least-squares method in terms of the nanotube attachment height.
Although the agreement in participating atomic positions is not quite as good,
the absolute error in the positioning of participating atoms is less than 0.18 Å.
Current experimental data does not exist to determine which procedure gives
the more realistic results.

PACS numbers: 02.30.Xx, 61.46.De, 81.05.Uw

1. Introduction

In Baowan et al [1] a numerical method is proposed to determine the geometric parameters
for joins between right circular cylindrical carbon nanotubes and planar graphene sheets. The
method is based on a discrete model for the carbon atoms and the covalent bonds comprising
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Figure 1. The problem geometries for Model I, in which the join contains only positive curvature,
and Model II, which has both positive and negative curvatures in the join region.

the join, and the particular geometries that are generated, are obtained by the principle of
minimizing the difference of the square of the distance between atoms which are separated
by two covalent bonds and their maximum possible distance. The discrete geometric method
proposed by Baowan et al [1] is related to certain bonded potential energy methods as proposed
by Cornell et al [2], Li and Chou [3], Jin and Yuan [4] and Natsuki et al [5]. Either approach
involves substantial numerical computation, and the question arises, ‘to what extent can such
intrinsically discrete models be approximated by a continuous model?’ Any continuous model
which accounts for the dominant qualitative features of the discrete models would, from a
theoretical perspective, be highly desirable. In a recent paper, Zang et al [6], these authors
propose that carbon nanotubes under pressure can be modelled by minimizing the curvature
squared, and bearing in mind that the bonded potential energy relates to the elastic bending
energy from small deformation elastic theory, here we also follow such an approach.

In the present paper, we also consider a continuous approach to this problem and use
variational calculus to determine the curve adopted by a line connecting a horizontal plane
and vertical carbon nanotube, such that the arc length of the curve and the size of the defect in
the graphene sheet are specified. On the other hand, the distance of the cylindrical part of the
carbon nanotube from the graphene sheet is not prescribed and is determined as a part of the
solution.

We position the graphene sheet in the (x, z)-plane with a circular defect of radius x0

centred on the origin. We also assume that a nanotube of radius a is located with its axis
co-linear with the y-axis starting from an unknown positive distance above the (x, z)-plane
which we will denote by y0. Since the defect and the nanotube are rotationally symmetric
about the y-axis, we can consider this as a problem in the two-dimensional (x, y)-plane. The
connecting covalent bonds are assumed to join the points on the graphene defect (x0, 0), and
the nanotube (a, y0) and have a total prescribed arc length �. Two likely configurations are
illustrated in figure 1. We comment that the problem is only physically sensible if the defect
edge at x = x0 is within a distance given by the prescribed arc length � of the tube radius,

2



J. Phys. A: Math. Theor. 41 (2008) 125203 B J Cox and J M Hill

x = a. That is, we require the inequalities a − � < x0 < a + � to be satisfied otherwise the
problem has no solution.

In the terminology of the calculus of variations we seek to determine the function y(x)

which has an element of arc length ds, such that the functional

J [y] =
∫ �

0
κ2 ds + λ

∫ �

0
ds

is an extremum, where κ is the curvature and λ is a Lagrange multiplier corresponding to the
fixed length constraint and which is used to determine the height of the nanotube y0. For a
two-dimensional curve y = y(x), we have κ = y ′′/(1 +y ′2)3/2 and this equation can be shown
to become

J [y] =
∫ x0

a

y ′′2 dx

(1 + y ′2)5/2
+ λ

∫ x0

a

(1 + y ′2)1/2 dx, (1)

where primes throughout denote differentiation with respect to x. We consider two distinct
models as shown in figure 1. One for which the join curvature remains positive, which we
examine in section 3, and another for which the join comprises two regions, one of positive
curvature and the other of negative curvature, which we deal with in section 4. For both
models we impose the continuity boundary conditions at the graphene sheet,

y(x0) = 0, y ′(x0) = 0. (2)

The boundary conditions at the carbon nanotube are determined by integration by parts of
the functional equation (1), and after applying the delta operator we may derive the standard
equation

δJ [y] =
[(

Fy ′ − d

dx
Fy ′′

)
δy + Fy ′′δy ′

]x0

a

+
∫ x0

a

(
Fy − d

dx
Fy ′ +

d2

dx2
Fy ′′

)
δy dx, (3)

where subscripts denote partial derivatives and here F is given by

F(y ′, y ′′) = y ′′2

(1 + y ′2)5/2
+ λ(1 + y ′2)1/2. (4)

In the present case only y ′ is prescribed at x = a, since y0 is unknown, and therefore at x = a

we require the natural or alternative boundary condition given by(
Fy ′ − d

dx
Fy ′′

)∣∣∣∣
x=a

= 0. (5)

In Model I, the value of y ′ ranges from 0 at x = x0 to −∞ at x = a. Therefore, in Model
I, the boundary condition is y ′(a) = −∞. In Model II, y ′ ranges from 0 to −∞, where it
changes sign and then ranges from ∞ down to some finite positive value before returning to
∞. Therefore, in Model II, the boundary condition is y ′(a) = ∞. Thus for the two models
we have at x = a, equation (5) along with

y ′(a) = −∞, Model I (6)

y ′(a) = ∞, Model II (7)

and in both cases y0 is determined from the value y0 = y(a). In the following section, we
derive the equation

κ = ±
(

λ +
α

(1 + y ′2)1/2

)1/2

, (8)
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where α is a constant and from which we immediately note that the special case α = 0
corresponds to a circular join with a constant curvature.

In the following section, we examine the general calculus of variations problem and then
derive the appropriate Euler–Lagrange equation for the present problem. In section 3 we
examine the case of a strictly positive curvature, identified as Model I in figure 1. Following
this, in section 4 we extend the analysis to the case involving both the positive and negative
curvatures, which we refer to as Model II. In section 5 we examine some numerical calculations
based on both models, initially for some general nondimensional cases, and subsequently for
the case examined in Baowan et al [1] by the discrete geometric method. Finally, in section 6
we present a brief conclusion to summarize the major outcomes.

2. The Euler–Lagrange equation

From (3) we observe that we have the usual Euler–Lagrange equation for those functions
F(x, y, y ′, y ′′), which depend on the second derivative of the function y, that is

Fy − d

dx
Fy ′ +

d2

dx2
Fy ′′ = 0. (9)

Since here F does not depend explicitly on y we know that Fy = 0, and we can immediately
integrate (9) to obtain

Fy ′ − d

dx
Fy ′′ = C1,

where C1 is an arbitrary constant of integration. Furthermore, we note from the alternative
boundary condition (5) that at the boundary x = a, C1 = 0 and therefore, for the entire domain
we have

Fy ′ = d

dx
Fy ′′ . (10)

Now by definition of the full derivative we have
d

dx
F = Fx + y ′Fy + y ′′Fy ′ + y ′′′Fy ′′ ,

and since in this case Fx ≡ Fy ≡ 0, and also substituting from (10) gives
d

dx
F = y ′′ d

dx
Fy ′′ + y ′′′Fy ′′ ,

which can be rearranged to give
d

dx
(F − y ′′Fy ′′) = 0,

whereupon integrating with respect to x gives

F − y ′′Fy ′′ = −α, (11)

where α is an arbitrary constant of integration. We now substitute from (4) into (11) from
which we may obtain

y ′′2

(1 + y ′2)3
= λ +

α

(1 + y ′2)1/2
,

and since the left-hand side is the square of the curvature κ2 and therefore we have derived
integral (8). We first comment that since for both models, y ′ is zero at one endpoint and
infinite at the other. Therefore, the second term in the parentheses of (8) ranges in value from
0 to α, and to maintain physical sensibility κ is real and we have that λ > 0 and α > −λ.
We again note that α can take a zero value, arising from κ = λ1/2, which corresponds to the
special case of a circular join with a constant curvature.
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3. Model I: positive curvature

On making the substitution tan θ = y ′, and assuming positive curvature, equation (8) becomes

κ = (λ + α cos θ)1/2, (12)

and from the definition of curvature κ = y ′′/(1 + y ′2)3/2 and making the same substitution for
y ′ which gives

dy

dθ
= sin θ

(λ + α cos θ)1/2
.

Now in order to simplify later algebra we introduce the constant k = [(λ + α)/2α]1/2 and the
new parametric variable φ, which is defined by

cos θ = 1 − 2k2 sin2 φ. (13)

It may be shown from these substitutions that

dθ

dφ
= 2k cos φ

(1 − k2 sin2 φ)1/2
,

and on introducing a second new constant β = (2/α)1/2 we may deduce

dy

dφ
= 2βk sin φ,

which on integration yields

y(φ) = 2βk(1 − cos φ); (14)

noting that the constant of integration arises from the boundary conditions (2). Here we can
consider (14) as a parametric equation for y in terms of the parameter φ, and denote the value
of φ at the point where θ = −π/2 with φ0 = sin−1(1/

√
2k), and note that for Model I,

−φ0 < φ � 0.
Now we determine the corresponding parametric equation for x by taking equation (12)

and substituting dy = tan θ dx, which yields

dx

dθ
= cos θ

(λ + α cos θ)1/2
, (15)

and after changing to the new parameter φ we obtain

dx

dφ
= β

1 − 2k2 sin2 φ

(1 − k2 sin2 φ)1/2
,

or alternatively

dx

dφ
= β

[
2(1 − k2 sin2 φ)1/2 − 1

(1 − k2 sin2 φ)1/2

]
,

which upon integration yields

x(φ) = x0 + β[2E(φ, k) − F(φ, k)], (16)

where the constant of integration arises from the boundary condition (2), and F(φ, k) and
E(φ, k) denote the usual Legendre incomplete elliptic integrals of the first and second kinds,
respectively. We use the form of these integrals as specified in Byrd and Friedman [7].

Now from the boundary condition (6) for Model I, at the point x = a where the join meets
the tube, on substituting these values into (14) and (16) yields

y0 = 2βk(1 − cos φ0), (17)
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x0 − a = β[2E(φ0, k) − F(φ0, k)]. (18)

From the arc length constraint we have

� =
∫ x0

a

(1 + y ′2)1/2 dx,

so that now on substituting y ′ = tan θ according to (15) we have

� =
∫ 0

−π/2

dθ

(λ + α cos θ)1/2
,

and the substitution cos θ = 1 − 2k2 sin2 φ yields

� = β

∫ 0

−φ0

dφ

(1 − k2 sin2 φ)1/2
,

from which we may deduce

� = βF(φ0, k). (19)

Thus, for a prescribed a, x0 and �, equations (18) and (19) constitute two equations for the
determination of the two unknowns β and k from which the attachment height y0 may be
obtained from (17).

By substitution of equation (19) into equation (18), we may derive

µ = 2

(
E(φ0, k)

F (φ0, k)

)
− 1, (20)

where µ = (x0 − a)/� and −1 < µ < 1. Since φ0 = sin−1(1/
√

2k), equation (20) must
be solved numerically for a given µ, to determine the value for k, and hence φ0. Then by
substitution back into (19) the value of β is determined and therefore y0 can be determined
from (17).

4. Model II: positive and negative curvatures

In this section we proceed exactly as in section 3, for positive curvature, for the first region from
the point of attachment to the graphene sheet (x0, 0) up until the critical point (xc, yc) where
the curvature changes sign. We then consider the second region from the critical point (xc, yc)

to the point of attachment to the carbon nanotube (a, y0) throughout which the curvature is
negative. We denote the value of the parameter θ as defined in the previous section at the
critical point to be θc, and from geometrical considerations we have that −π < θc < −π/2.

The same considerations apply to the region of positive curvature as used in section 3
and therefore equations (14) and (16) are valid in the first region of Model II. This region is
bounded by the point where the curvature κ = 0, and from (12), we may derive

θc = −cos−1(−λ/α).

Now employing the new parametric variable φ as defined by (13), we determine that φ = −π/2
when θ = θc. By substituting φ = −π/2 into equations (14) and (16), we may derive

yc = 2βk, xc = x0 − β[2E(k) − K(k)], (21)

where β and k are as defined in section 3, and K(k) and E(k) are the usual complete elliptic
integrals of the first and second kinds, respectively.

In the second region, we take the negative sign of (8) and following a similar procedure
to that described in section 3 gives

y(φ) = 2βk(1 + cos φ), (22)
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where the constant of integration arises from the condition that y = yc when φ = −π/2 and
then we use expression (21) for yc. We note that equation (22) differs from (14) only by a
change in the sign of one term. Similarly, by taking the negative sign of (8) and solving for
the parametric form of x we may derive

x(φ) = 2xc − x0 − β[2E(φ, k) − F(φ, k)],

where the constant of integration is determined from the boundary condition at φ = −π/2.
On substituting for xc using (21) yields

x(φ) = x0 − β{2[2E(k) − E(−φ, k)] − [2K(k) − F(−φ, k)]}, (23)

and we comment that throughout we follow the usual convention that E(k) refers to the
complete elliptic integral of the second kind while E(−φ, k) denotes the corresponding
incomplete elliptic integral.

Now from the boundary conditions at the point of attachment to the carbon nanotube (7)
we know that φ = −φ0 at the point (a, y0). By substitution into (22) we may derive

y0 = 2βk(1 + cos φ0), (24)

and similarly, substitution in (23) gives

x0 − a = β{2[2E(k) − E(φ0, k)] − [2K(k) − F(φ0, k)]}. (25)

The arc length constraint is obtained from the two regions and we have

� =
∫ 0

θc

dθ

(λ + α cos θ)1/2
+

∫ −π/2

θc

dθ

(λ + α cos θ)1/2
,

which by essentially the same procedure to that employed in section 3 we may derive

� = β[2K(k) − F(φ0, k)]. (26)

Thus for a prescribed a, x0 and �, equations (25) and (26) constitute two equations for the
two unknowns β and k, remembering that φ0 = sin−1(1/

√
2k). Once these two constants are

determined, the attachment height y0 may be obtained from (24).
By straightforward algebra we may deduce

µ = 2

(
2E(k) − E(φ0, k)

2K(k) − F(φ0, k)

)
− 1, (27)

where as before, µ = (x0 − a)/�. Since φ0 = sin−1(1/
√

2k), equation (27) only involves the
single unknown k. We may solve this equation numerically for a prescribed µ, to determine
the value for k which in turn gives the value for φ0. By further substitution into (26) gives the
value for β, which allows, by substitution into (24), the attachment height y0 to be deduced.

We observe that formally equation (20) coincides with (27) for the value k = 1/
√

2. We
denote the value of µ at this point by µ0 and we have

µ0 = 2

(
E(1/

√
2)

K(1/
√

2)

)
− 1 = 0.456 946 5810 . . . , (28)

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds,
respectively.
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Figure 2. Relation between the characteristic parameter µ = (x0 − a)/� and constant B = 1/k2

for both models, obtained from (20) and (27).

5. Numerical results

We begin by examining some general features of the solutions to Models I and II, and then
subsequently examine a particular carbon nanotube–graphene join.

The first observation is that the solution is characterized by the nondimensional
characteristic parameter µ = (x0 − a)/�. The different regions of the solution can be seen
by examining equations (20) and (27) as shown in figure 2 which for convenience we plot µ

against a new constant B = 1/k2. In this plot three distinct regions are evident. First there
is the region 2/π < µ < 1, which corresponds to joins with arc length �, less than a quarter
of a circle circumference of radius x0 − a. In this case the constant B is negative, which
corresponds to a negative value of α and an imaginary modulus k for the elliptic integrals. The
solution asymptotes with the line µ = 1, and crosses the vertical axis at the point µ = 2/π ,
which corresponds to the solution degenerating to a constant curvature (i.e. a circular join).
The second region exists for µ0 � µ < 2/π , where µ0 is given in (28), and corresponds to
Model I when the arc length � of the join is greater than the quarter circumference of a circle of
radius x0 − a. In this region 0 < B � 2, and therefore α is always positive and the modulus k
is strictly real. The third and final region applies to the range −1 < µ < µ0, and corresponds
to Model II. This model is invoked when the arc length �, is much greater than the quarter
circumference of a circle of radius x0 − a, and therefore a change of curvature is necessary to
accommodate the join. For Model II, the constant B is restricted to the range 1 < B � 2 and
therefore again α is strictly positive. As can be seen from figure 2, the constant B never takes
a value greater than 2 for any of the solution regions.

We now apply the solutions derived in sections 3 and 4 to a nondimensionalized situation.
We assume a fixed arc length � = 1 and a graphene attachment point x0 = 1. We then allow
the tube radius a, to take values between 0.1 and 0.9, in increments of 0.1. In this configuration
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Figure 3. Nondimensional plots of joins y = y(x) for various values of µ.

Table 1. Numerical values for the parameter µ, corresponding constant k and attachment height
y0 for various tube radii a assuming x0 = � = 1.

a µ Model k y0

0.1 0.9 I 0.004 739 80i 0.239 857 78
0.2 0.8 I 0.099 135 84i 0.436 837 09
0.3 0.7 I 0.421 216 51i 0.572 073 31
0.4 0.6 I 0.954 637 59 0.668 386 32
0.5 0.5 I 0.714 165 31 0.738 729 74
0.6 0.4 II 0.714 228 72 0.789 576 89
0.7 0.3 II 0.744 140 01 0.824 438 60
0.8 0.2 II 0.781 018 61 0.845 295 25
0.9 0.1 II 0.818 760 73 0.853 212 08

µ = 1 − a, and the resulting joins are shown in figure 3. As can be seen from this figure, for
the three cases when 2/π < µ < 1, Model I is used with a negative value of 1/k2. For the
cases when µ0 < µ < 2/π , Model I is again used, however in these cases 0 < 1/k2 < 2.
Finally, the cases when −1 < µ < µ0, Model II provides the solution. For various values of
the characteristic parameter µ, numerical values of the constant k and the attachment height
y0 for all the curves in the figure are listed in table 1.

We now compare our results with those of Baowan et al [1] who examine the symmetric
join for a (6,0) nanotube with a graphene sheet using a least-squares approach. Since we
are comparing an essentially discrete not strictly axially symmetric surface with a continuous
axially symmetric one, there is no unique procedure to do this. Here we adopt as the comparison
surface from Baowan et al [1] to be that which is defined by the two central atomic locations,
and the two midpoints between the two atoms at the end points on the graphene sheet and the
carbon nanotube. In Baowan et al [1], the radius of the fixed part of the graphene sheet is
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Table 2. Atomic positions for the variational method compared with the least-squares procedure
for a (6,0) to graphene join.

Least squares Variational

x y x y Error (Å) Parameter value φ

3.55 0 3.55 0 0 0
2.94 0.363 2.87 0.204 0.174 −0.409 792 50
2.225 1.59 2.155 1.427 0.177 −1.134 944 49
2.105 2.315 2.105 2.16 0.155 −1.445 179 78

3.55 Å, and the fixed part of the tube radius is taken to be 2.105 Å. It is a little more difficult to
specify the arc length � for this comparison since in the least-squares study, the join comprises
three straight sections of lengths 0.71 Å, 1.42 Å and 0.735 Å. These sections sum to a total
length of 2.865 Å. However, we cannot simply use this as a value for � since it does not account
for the curvature inherent in the variational solution. Therefore, we assume that the join curve
will be approximately a quarter circle and we also assume that the longest straight section
(1.42 Å) subtends an angle of π/4 radians at the centre of the circle. In this way, we may derive
a more comparable arc length � ≈ 2.914 Å. Using these values we derive a value µ = 0.4959
and an attachment height y0 = 2.16 Å which compares reasonably well with the figure for
the least-squares approach which is y0 = 2.315 Å, since it differs by only 0.155 Å or 6.7%.
In figure 4, we graph the join shapes predicted by the variational and least-squares methods.
Also shown in the figure are the assumed atomic locations for the variational approach which
are denoted by squares that are joined by straight lines for comparison purposes. It can be
seen from this figure that the y0 height is similar in both cases, but the atomic locations which
participate in the join as compared to those predicted by the least-squares method are not
quite as accurate (see table 2). The third column of table 2 is the absolute distance between
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the two predictions, while the fourth column gives the corresponding parameter value for φ.
Despite this apparent discrepancy, the absolute error for the participating atomic positions is
still within 0.18 Å of that predicted by the least-squares method.

6. Conclusions

In this paper, we propose a variational approach to determine the join between a carbon
nanotube and a graphene sheet as an alternative procedure to the least-squares approach
examined by Baowan et al [1]. The variational approach is based on the principle of minimizing
the square of the curvature which in turn relates to the minimization of covalent bond energy.
Analysis of the solution has identified the characteristic parameter µ = (x0 − a)/� and three
solution regimes. The first regime is when 2/π < µ < 1 and the curve is shallower than a
quarter circle. The point µ = 2/π relates to the special case where the curvature is constant
and the join curve is precisely a quarter circle. The second regime occurs for the range
µ0 < µ < 2/π , where µ0 is given by equation (28). Here the curve is steeper than a quarter
circle but still comprises only positive curvature. The point µ = µ0 corresponds to the
case when the curvature approaches zero at the end point x = a. The final regime applies
for the range −1 < µ < µ0 and corresponds to Model II when the join curve comprises
both the positive curvature and negative curvature regions. A comparison with the results
for a (6,0) and a graphene join using the least-squares and variational methods shows that
the tube connect height y0 is in good agreement (an absolute error of 0.155 Å), although the
agreement in the atomic positions participating in the join is not quite as good but still within
an absolute error of 0.18 Å. However, some disagreement is not entirely unexpected since
we are effectively attempting to derive only two points from a continuous method and the
procedure for determining the comparison surface is by no means unique.
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